Abstract

This work proposes a method to evaluate the effects of transition delay faults (TDFs) in GPUs. The method takes advantage of low-level (i.e., RT- and gate-level) descriptions of a GPU to evaluate the effects of transition delay faults in GPUs, thus paving the way to model them as errors at the instruction level, which can contribute to the resilience evaluations of large and complex applications. For this purpose, the paper describes a setup that efficiently simulates transition delay faults. The results allow us to compare their effects with stuck-at-faults (SAFs) and perform an error classification correlating these faults as instruction-level errors. We resort to an open-source model of a GPU (FlexGripPlus) and a set of workloads for the evaluation. The experimental results show that, according to the application code style, TDFs can compromise the operation of an application from 1.3 to 11.63 times less than SAFs. Moreover, for all the analyzed applications, a considerable percentage of sites of the Integer (5.4% to 51.7%), Floating-point (0.9% to 2.4%), and Special Function unit (17.0% to 35.6%) can become critical if affected by a SAF or TDF. Finally, a correlation between the fault's impact from both fault models and the instructions executed by the applications reveals that SAFs in the functional units are more prone (from 45.6% to 60.4%) to propagate errors at the software level for all units than TDFs (from 17.9% to 58.8%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.