Abstract

Abstract Intermittent water supply (IWS) is one of the effective methods to manage the consumption of urban water networks under water scarcity conditions. However, it is essential to minimize unfair water distribution in this method by defining a proper strategy. This study utilized the EPANET pressure-dependent hydraulic analysis and the gray wolf optimization algorithm to achieve maximum volumetric reliability under different scenarios in a district of the Hamedan urban water distribution network in Iran. The volumetric reliability of the network was evaluated in the IWS condition regardless of justice constraints, with the justice constraint, and by considering the leakage in the IWS network with the justice constraint. The first scenario demonstrated that the reliability decreased by an average of 4.6% for every meter of water level reduction in the tank. The second scenario revealed that the objective function was negligibly affected by the variation of the justice constraint; however, fluctuation of the water level in the tank significantly affected the volumetric reliability. In the third scenario, the objective function value was significantly impacted by leakage, ranging from 0 to 0.3 (representing the absence and presence of leakage in 30% of the nodes, respectively), resulting in an average decrease of about 17%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.