Abstract

Increasing power consumption and CO2 emissions generated by large data networks have become a major concern over the last decade. For this problem, the emerging paradigm of Software-Defined Networks (SDN) can be seen as an attractive solution. In these networks an energy-aware routing model could be easily implemented leveraging the control and data plane separation. This paper investigates the impact of energy-aware routing on SDN performance. To that end, we propose a novel energy- aware mechanism that reduces the number of active links in SDN with multiple controllers, considering in-band control traffic, i.e. links are shared between data and control plane traffic. The proposed strategy exploits knowledge of the network topology combined with traffic engineering techniques to reduce the overall power consumption. Therefore, two heuristic algorithms are designed: a static network configuration and a dynamic energy-aware routing. Significant values of switched-off links are reached in the simulations using real topologies and demands data. Moreover, obtained results confirm that crucial network parameters such as control traffic delay, data path latency, link utilization and TCAM occupation are affected by the performance-agnostic energy-aware model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call