Abstract

Vietnam is currently undertaking numerous transportation and infrastructure projects in urban areas, particularly in densely populated cities such as Hanoi and Ho Chi Minh City. These cities have high traffic density and frequent traffic congestion, which necessitates the use of construction equipment such as vibratory rollers and pile drivers. However, these machines can cause vibrations that affect the surrounding structures. This study investigates the impact of roller compaction-induced vibration on the building structure of Ring road No.2 in Hanoi, Vietnam. The finite element method (Plaxis 2D) was applied to evaluate the impact of vibration on surrounding structures. The maximum measured velocity is similar to the values derived from numerical analysis. The Finite element method (FEM) results exhibited a high degree of correlation with the actual velocity measurement and frequency dominant structure responses caused by ground-borne vibration induced by roller compaction within the frequency range of 5 Hz to 10 Hz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call