Abstract

Biochar amendment is a promising strategy for mitigating antibiotic resistance genes (ARGs) in soil and plants, but its effects on ARGs at field scale are not fully understood. Here, field trials were executed utilizing two plant varieties, Brassica juncea and Lolium multiflorum, with four types of biochar to investigate changes in ARGs and microbiome in soil, rhizosphere, root endophytes, and leaf endophytes. Results showed that biochar altered ARG distribution in soil and plant, and restrained their transmission from soil and rhizosphere to endophytes. A reduction of 1.2–2.2 orders of magnitude in the quantity of ARGs was observed in root and leaf endophytes following biochar addition, while no significant changes were observed in soil and rhizosphere samples. Procrustes and network analyses revealed significant correlations between microbial communities and mobile genetic elements with ARGs (P < 0.05). Besides, redundancy and variation partitioning analysis indicated that bacterial communities may play a dominant role in shaping the ARGs profile, contributing to 43 % of the variation observed in ARGs. These field results suggest that biochar amendment alone may not fully alleviate ARGs in soil, but it has a significant beneficial impact on food safety and human health by effectively reducing ARGs in plant endophytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.