Abstract

BackgroundAedes japonicus was first documented in Ontario, Canada, in 2001. The objective of this study was to determine the effect of Ae. japonicus establishment on the abundance of other mosquitoes in the Greater Golden Horseshoe (GGH) region of Ontario.MethodsAdult mosquito data from the Ontario West Nile virus surveillance program were used. Descriptive analyses, linear trends and distribution maps of average trap count per month for six mosquito species of interest were produced. Multivariable negative binomial regression models were constructed to 1) test whether the invasion of Ae. japonicus affected the abundance of other mosquitoes by comparing the time period before Ae. japonicus was identified in an area (pre-detection), to after it was first identified (detection), and subsequently (establishment), and 2) identify the variables that explain the abundance of the various mosquito species.ResultsThe monthly seasonal average (May–October) of Ae. japonicus per trap night increased from 2002 to 2016, peaking in September, when the average of most other mosquitoes decrease. There were increased numbers of Ae. triseriatus/hendersoni (Odds Ratio (OR): 1.40, 95% Confidence Interval (CI): 1.02–1.94) and decreased numbers of Coquillettidia perturbans (OR: 0.43, 95% CI: 0.26–0.73) in the detection period, compared to the pre-detection period. Additionally, there was a decrease in Cx. pipiens/restuans (OR: 0.87, 95% CI: 0.76–0.99) and Cq. perturbans (OR: 0.68, 95% CI: 0.49–0.94) in the establishment period, compared to the pre-detection period. None of the most parsimonious explanatory models included the period of the establishment of Ae. japonicus.ConclusionsThere is no evidence that the introduction of Ae. japonicus significantly reduced populations of Ae. triseriatus/hendersoni, Cx. pipiens/restuans or An. punctipennis in the GGH. While further research is needed to understand the impact of the Ae. japonicus invasion on other mosquito species, our work indicates that, on a regional scale, little impact has been noted.

Highlights

  • Aedes japonicus was first documented in Ontario, Canada, in 2001

  • Multivariable negative binomial regression models were constructed to 1) test whether the invasion of Ae. japonicus affected the abundance of other mosquitoes by comparing the time period before Ae. japonicus was identified in an area, to after it was first identified, and subsequently, and 2) identify the variables that explain the abundance of the various mosquito species

  • There were increased numbers of Ae. triseriatus/hendersoni (Odds Ratio (OR): 1.40, 95% Confidence Interval (CI): 1.02–1.94) and decreased numbers of Coquillettidia perturbans (OR: 0.43, 95% CI: 0.26–0.73) in the detection period, compared to the predetection period

Read more

Summary

Objectives

The objective of this study was to determine the effect of Ae. japonicus establishment on the abundance of other mosquitoes in the Greater Golden Horseshoe (GGH) region of Ontario. The objective of this study is to determine the effect of Ae. japonicus establishment on the abundance and distribution of other competing mosquitoes in the Greater Golden Horseshoe region and to describe the mosquito community of southern Ontario

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call