Abstract

Livestock manure is typically applied to fertilize crops, however the accurate determination of manure nutrient composition through a reliable method is important to optimize manure application rates that maximize crop yields and prevent environmental contamination. Existing laboratory methods can be time consuming, expensive, and generally the results are not provided prior to manure application. In this study, the evaluation of a low-field nuclear magnetic resonance (NMR) sensor designated for manure nutrient prediction was assessed. Twenty dairy manure samples were analyzed for total solid (TS), total nitrogen (TN), ammoniacal nitrogen (NH4-N), and total phosphorus (TP) in a certified laboratory and in parallel using the NMR analyzer. The linear regression of NMR prediction versus lab measurements for TS had an R2 value of 0.86 for samples with TS < 8%, and values of 0.94 and 0.98 for TN and NH4-N, respectively, indicating good correlations between NMR prediction and lab measurements. The TP prediction of NMR for all samples agreed with the lab analysis with R2 greater than 0.87. The intra- and inter-sample variations of TP measured by NMR were significantly larger than other parameters suggesting less robustness in TP prediction. The results of this study indicate low-field NMR is a rapid method that has a potential to be utilized as an alternative to laboratory analysis of manure nutrients, however, further investigation is needed before wide application for on farm analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.