Abstract

A novel approach to analytically evaluate the bit error probability in optically preamplified direct-detection systems is presented, which can take into account the effects of pulse shaping, chirping, filtering at the transmitter and the receiver, both pre- and postdetection, chromatic dispersion, and ASE noise. The method is computationally very fast in that the saddle point integration method for solving the resulting line integral of a particular moment generating function is adopted. A closed-form approximation for the bit error probability is also provided, which is within 0.01 dB from the exact numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.