Abstract
We present a new study on the design, discovery and space generation of carbon selenide based photovoltaic (PV) materials. By extending acceptors and leveraging density functional theory (DFT) and machine learning (ML) analysis, we discover new QDs with remarkable PV properties. We employ various ML models, to correlate the exciton binding energy (Eb) of 938 relevant compounds from literature with their molecular descriptors of structural features that influence their performance. Our study demonstrates the potential of ML approaches in streamlining the design and discovery of high-efficiency PV materials. Also the RDKit computed molecular descriptors correlates with PV parameters revealed maximum absorption (λmax) ranges of 509–531 nm, light harvesting efficiency (LHE) above 92 %, Open Circuit Voltage (Voc) of 0.22–0.45 V, and short Circuit (Jsc) currents of 37.92–42.75 mA/cm2. Their Predicted Power Conversion Efficiencies (PCE) using the Scharber method reaches upto 09–13 %. This study can pave the way for molecular descriptor-based design of new PV materials, promising a paradigm shift in the development of high-efficiency solar energy conversion technologies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.