Abstract

Single-pass friction stir welding of AA2219-O aluminum alloy was carried out at high rotation speed (1180 rpm), and transverse travel rate of 33.5 mm/min was selected. The microstructural, mechanical and electrochemical characteristics of the weldment are investigated in this study. The high rotational tool speed resulted in a less uniform distribution of the intermetallic θ-phase (CuAl2) in the thermo-mechanically affected zone (TMAZ) than in the weld nugget zone (WNZ). The higher transfer coefficient and lower charge transfer resistance (Rct + Rθ) were observed in case of TMAZ as evaluated from potentiodynamic polarization and impedance spectroscopy, respectively. These results confirmed that microstructural variations could deteriorate the electrochemical performance of the weldment. TMAZ provided the least corrosion resistance than the base metal (BM) and WNZ due to the high concentration of cathodic intermetallic particles and possibly due to the large mechanical distortion of the grain structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.