Abstract

This study builds on our previous systematic literature review (SLR) that assessed the applications and performance of zk-SNARK, zk-STARK, and Bulletproof non-interactive zero-knowledge proof (NIZKP) protocols. To address the identified research gaps, we designed and implemented a benchmark comparing these three protocols using a dynamic minimized multiplicative complexity (MiMC) hash application. We evaluated performance across four general-purpose programming libraries and two programming languages. Our results show that zk-SNARK produced the smallest proofs, while zk-STARK generated the largest. In terms of proof generation and verification times, zk-STARK was the fastest, and Bulletproof was the slowest. Interestingly, zk-SNARK proofs verified marginally faster than zk-STARK, contrary to other findings. These insights enhance our understanding of the functionality, security, and performance of NIZKP protocols, providing valuable guidance for selecting the most suitable protocol for specific applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.