Abstract

IntroductionCaries lesions in dental hard tissues autofluoresce when exposed to light of certain wavelengths, whereas sound tissues do not, and this can be used as an in vitro histological marker for dental caries. Detection of autofluorescence is the basis of KaVo DIAGNOdent™ technology, and provides objective feedback control of laser-stimulated ablation of dental caries for the KaVo Key Laser 3™. This Er:YAG laser operates at 2940nm wavelength, and is effective at removal of infected dental hard tissues. Micro-computed tomography (micro-CT) allows the non-invasive investigation of three-dimensional structures and analysis of mineral density profiles of dentine following laser ablation. ObjectiveTo evaluate removal of infected, demineralised dentine by Er:YAG irradiation with a laser feedback mechanism, using micro-CT. Design27 carious teeth (1 control) and 1 sound tooth, treated with the KaVo Key Laser 3™ using a KaVo™ non-contact 2060 handpiece at specific feedback settings, were examined using a Skyscan 1172 Micro-CT, to observe the efficiency of demineralised dentine removal. Grey scale images obtained were colour rendered to assist detection of demineralised tissue if present. ResultsComplete removal of demineralised tissue occurred with laser-stimulated ablation under feedback control at values of 7 and 8 when measured by micro-CT. At greater values, removal of demineralised dentine was incomplete. ConclusionExamination of dental tissues by micro-CT allowed determination of the efficiency of Er:YAG laser-stimulated ablation. Feedback control of the KaVo Key Laser 3™ appeared to operate like a cut-off switch when infected dentine was eliminated, at a threshold of between 6 and 7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.