Abstract

ABSTRACT This paper experimentally studies the efficiency of a multi-task geosynthetic comprised of a geogrid and a nonwoven geotextile layer in diminishing the required thickness of base course constructed over different soft subgrades in container yards pavements. In this research, a total number of 24 laboratory static plate load tests (PLT) were conducted in a large-scale steel test box. In all tests, the reinforcement was embedded at the interface of the base course and subgrade to get both reinforcing and separation functions involved simultaneously. The investigated parameter was bearing capacity coefficient K30 obtained directly from the results of laboratory PLTs through a 305 mm-diameter circular steel plate. Results illustrated that in the case of composite-geosynthetic inclusion, the required thickness of the base course could be reduced from 17 to 23 percent depending on the strength of the underlying subgrade layer. This could be both economically and environmentally instrumental in real heavy-duty pavement design. Moreover, considering the geosynthetic end-fixation led to better functionalities of all reinforcements in fixed-end models compared to free-end ones. The results also demonstrated that the efficiency of the geocomposite is contingent on the thickness of the base course. As the thickness increases, the efficiency of the reinforcement reduces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call