Abstract
Connected vehicle (CV) technology has revolutionised the intelligent transportation management system by providing new perspectives and opportunities. To further improve risk perception and early warning capabilities in intricate traffic scenarios, a comprehensive field test was conducted within a CV framework. Initially, data for basic safety messages (BSM) were systematically gathered within a real-world vehicle test platform. Subsequently, an innovative approach was introduced that combined multimodal interactive filtering with an advanced vehicle dynamics model to integrate BSM vehicle motion data with observations from roadside units. In addition, a driving condition perception methodology was developed, leveraging rough sets and an enhanced support vector machine (SVM), to identify aberrant driver behaviours and potential driving risks effectively. Furthermore, this study integrated BSM data from various scenarios, including car-following, lane changes, and free driving within the CV environment, to formulate multidimensional driving state sequence patterns for short-term predictions (0.5 s) utilising the long short-term memory (LSTM) model framework. The results demonstrated the effectiveness of the proposed approach in accurately identifying potentially hazardous driving conditions and promptly predicting collision risks. The findings from this research hold substantial promise in advancing road traffic safety management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.