Abstract

Abstract Small, declining populations can face simultaneous, interacting, ecological and genetic threats to viability. Conservation management strategies designed to tackle such threats independently may then prove ineffective. Population viability analyses that evaluate the efficacy of management strategies implemented independently versus simultaneously are then essential to the design of effective management plans, yet such quantitative evaluations are typically lacking. We used stochastic individual‐based models, parameterised with high‐quality multi‐year demographic and genetic data, to evaluate the efficacy of independent or simultaneous ecological (supplementary feeding) and genetic (translocations to alleviate inbreeding) management strategies for a red‐billed chough (Pyrrhocorax pyrrhocorax) population of major conservation concern. This population is experiencing ecological threats from food limitation and genetic threats from escalating inbreeding. Conservation managers therefore face a dilemma: supplementary feeding may be ineffective if inbreeding is limiting stochastic population growth rate (λs), while translocations may be ineffective if food is limiting. Model simulations suggested that the focal population will decline to extinction relatively rapidly with no conservation management (mean λs ≈ 0.86) and with genetic management alone (λs ≈ 0.90). Ecological management alone reduced, but did not halt the population decline (λs ≈ 0.93). However, simultaneous genetic and ecological management yielded population stability (λs ≈ 1), with genetic rescue lasting ~25 years. These outcomes arose because the capacity for translocations to alleviate inbreeding depression is limited by food availability, while supplementary feeding cannot achieve population viability in the presence of accumulating inbreeding. However, supplementary feeding improved environmental quality enough to allow expression of variance in fitness and thus inbreeding depression, meaning that reductions in inbreeding following translocations can increase λs. Synthesis and applications. Our analyses suggest that simultaneous management of ecological and genetic threats will be critical to ensuring viability of Scotland's chough population; neither strategy independently is likely to achieve population persistence and may consequently waste conservation resources. Managers of other resource‐limited, inbred populations should consider that the efficacy of strategies designed to alleviate ecological and genetic threats may be interdependent, such that holistic management is essential to ensure population viability.

Highlights

  • Small, declining populations can face multiple ecological, genetic and demographic threats that act simultaneously to decrease viability (Fagan & Holmes, 2006; Soulé & Mills, 1998)

  • We used unusually detailed demographic data from the Scottish chough population, which is of major conservation concern, to evaluate the efficacy of independent and simultaneous management strategies designed to alleviate the known ecological threat of food limitation, and the emerging genetic threat of accumulating inbreeding due to small Ne

  • We show that capacity to alleviate inbreeding depression through translocations is limited by ecological constraints attributable to food availability, while current supplementary feeding designed to alleviate these constraints may on its own be insufficient to ensure population viability in the presence of accumulating inbreeding

Read more

Summary

| INTRODUCTION

Small, declining populations can face multiple ecological, genetic and demographic threats that act simultaneously to decrease viability (Fagan & Holmes, 2006; Soulé & Mills, 1998). Bouzat et al, 2009; Kenney, Allendorf, McDougal, & Smith, 2014), population viability analyses (PVAs) that quantitatively evaluate the efficacy of independent and simultaneous ecological and genetic management strategies are lacking, in the context of environment‐dependent inbreeding depression. One such population that is facing genetic and ecological threats and is of major conservation concern is the Scottish red‐billed chough (Pyrrhocorax pyrrhocorax, hereafter “choughs”) population. We thereby evaluate the efficacy of independent and simultaneous strategies to mitigate ecological and genetic threats, and provide management recommendations

| MATERIALS AND METHODS
Findings
| DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call