Abstract

In many cases, stormwater compliance monitoring is labor intensive, expensive, and largely unsuccessful in providing the data needed to support stormwater management goals. To help address these issues, diffusive gradients in thin film (DGTs), time-integrative passive samplers for metals, were evaluated to monitor copper in stormwater runoff. DGTs were co-located with traditional autosamplers within the stormwater conveyance systems at Naval Base San Diego (NBSD) to provide a direct comparison with composite sampling. DGTs were exposed in the laboratory to flow-averaged composite samples from NBSD stormwater conveyance systems. These experiments showed increasing uptake over time (range = 1.5–24 h) for copper, with positive, linear correlations (r2 > 0.980) between exposure duration and copper mass accumulated. However, it appears that the corresponding calculations of the DGT-labile fraction (CDGT) relative to the dissolved fraction fluctuated across the different exposure durations. In general, trends observed for CDGT measurements from the field were consistent with trends in the lab DGT exposures and traditional dissolved metal measurements from composite samples. Finally, time-weighted average copper concentrations from DGTs deployed for the first and second phases of storm events were within 30% of measurements from DGTs that were deployed for the entire storm event in the same stormwater vault. Cumulatively, these results show promise for continuous monitoring with DGTs as an approach that produces data more representative of exposure to the receiving environment during episodic events than data from traditional grab or composite chemistry sampling, and can represent significant cost savings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.