Abstract

Numerous preparations containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are commercially available. We examined changes in serum lipids/lipoproteins and the omega-3 index with various EPA/DHA formulations. Dyslipidemic subjects (N=10/arm) were randomized to daily doses of prescription fish oil (3360 mg EPA+DHA), supplemental fish oil (3340 mg EPA+DHA) or a krill oil blend (960 mg EPA+DHA); in a 6-week, open-label trial. The fish oil preparations produced significant (p<0.05) and comparable reductions in triglycerides (∼-A¯Â€Â­25%); whereas the krill oil blend (KOB) resulted in a modest increase. Other lipoprotein changes were similar across treatments. The fish oil products each produced similar elevations in the omega-3 index, and more than the KOB, although all agents produced significant changes from baseline. When evaluated per gram of EPA+DHA dosed, the KOB increased the omega-3 index 2-fold more than the fish oil groups.Overall, the fish oil preparations provided comparable and favorable changes in triglycerides and the omega-3 index, which were significantly greater than those observed with the KOB.

Highlights

  • The consumption of the omega-3 fatty acids (FA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have demonstrated numerous health benefits including lower rates of cardiovascular disease (CVD) [1]

  • When analyzed per gram of EPA/DHA consumed, the krill oil blend (KOB) produced a greater increase in low-density lipoprotein cholesterol (LDL-C) compared to supplemental fish oil, and a notable high-density lipoprotein cholesterol (HDL-C) increase of 8%, but overall changes were comparable to the fish oil products

  • The increase in the omega-3 index was similar between the prescription and supplemental fish oil products, and these were significantly more than the KOB (Table 4)

Read more

Summary

Introduction

The consumption of the omega-3 fatty acids (FA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have demonstrated numerous health benefits including lower rates of cardiovascular disease (CVD) [1]. Common sources of EPA+DHA include fish oil and krill oil. Krill oil (Euphausiasuperba) is another supplemental source but the EPA+DHA content is markedly less per serving compared to fish oil. Omega-3 FA are provided as ethyl esters. Previous data have suggested phospholipids are more efficient at delivering EPA+DHA,[3,4] and ethyl esters can be poorly absorbed if taken without food [5]. This difference in chemical for may impact the absorption and bioavailability of the EPA+DHA, and potentially the subsequent cardioprotective effects of these products

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call