Abstract

The impact of low-frequency alternating magnetic field thawing (LF-MFT) on the physicochemical and gelling properties of porcine myofibrillar proteins (MP) was studied. Results showed that compared to atmosphere thawing (AT), LF-MFT helped in inhibiting the oxidation and denaturation of protein during thawing, thereby maintaining a superior MP gel (P < 0.05). In particular, LF-MFT-4 (LF-MFT at 4 mT) could decrease the oxidation of MP, which might be due to having a higher content of total sulfhydryl and less carbonyl of MP than other thawing treatments. The denaturation of MP was reduced since LF-MFT-4 led to less aggregation and degradation than AT. The gelling properties were also retained, and a compact and homogeneous network structure was formed after LF-MFT-4, resulting in excellent water retention. These findings suggested that LF-MFT-4 improved the gelling properties of MP by inhibiting its oxidation and denaturation, demonstrating a potential application of LF-MFT in meat thawing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.