Abstract

Impacts of flood management alternatives are mostly assessed by inundation depth. Other inundation parameters such as velocity and duration are rarely taken into consideration. In this paper, a multi-criteria decision making (MCDM) based framework is used to analyze the effects of inundation velocity and duration on evaluation of flood management alternatives. The framework incorporates a two-dimensional (2D) flood model, Flood2D-GPU and a spatial MCDM (SMCDM) method, Spatial Compromise Programming (SCP). Flood2D-GPU is employed to simulate floods and SCP is applied to rank a set of flood management alternatives. Assessment of flood management options is conducted with multiple different weight set scenarios. First, alternatives are ranked without consideration of inundation velocity and duration. Then, the importance of these parameters increases and the alternatives are ordered in each weight set and a GIS map showing the best alternative in each grid cell is generated in each case. Best alternative maps (BAMs) are compared to investigate the impacts of inundation velocity and duration on selection of best strategy using F fit measure and κ analysis. The framework applicability is illustrated on the Swannanoa River watershed located in the state of North Carolina, US. Case study results indicate up to 49.7 % change of BAM by taking into account inundation velocity and duration. The presented approach addresses the change in selection of flood management strategies resulted by considering other inundation parameters rather than inundation depth. This can potentially reduce the uncertainties associated with the decisions made without consideration of inundation velocity and duration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call