Abstract
Sandy clay loam soil was contaminated with 5000 mg kg(-1) diesel, and amended with nitrogen (15.98 atom% (15)N) at 0, 250, 500, and 1000 mg kg(-1) to determine gross rates of nitrogen transformations during diesel biodegradation at varying soil water potentials. The observed water potential values were -0.20, -0.47, -0.85, and -1.50 MPa in the 0, 250, 500, and 1000 mg kg(-1) nitrogen treatments respectively. Highest microbial respiration occurred in the lowest nitrogen treatment suggesting an inhibitory osmotic effect from higher rates of nitrogen application. Microbial respiration rates of 185, 169, 131, and 116 mg O(2) kg(-1) soil day(-1) were observed in the 250, 500, control and 1000 mg kg(-1) nitrogen treatments, respectively. Gross nitrification was inversely related to water potential with rates of 0.2, 0.04, and 0.004 mg N kg(-1) soil day(-1) in the 250, 500, and 1000 mg kg(-1) nitrogen treatments, respectively. Reduction in water potential did not inhibit gross nitrogen immobilization or mineralization, with respective immobilization rates of 2.2, 1.8, and 1.8 mg N kg(-1) soil day(-1), and mineralization rates of 0.5, 0.3, and 0.3 mg N kg(-1) soil day(-1) in the 1000, 500, and 250 mg kg(-1) nitrogen treatments, respectively. Based on nitrogen transformation rates, the duration of fertilizer contribution to the inorganic nitrogen pool was estimated at 0.9, 1.9, and 3.2 years in the 250, 500, and 1000 mg kg(-1) nitrogen treatments, respectively. The estimation was conservative as ammonium fixation, gross nitrogen immobilization, and nitrification were considered losses of fertilizer with only gross mineralization of organic nitrogen contributing to the most active portion of the nitrogen pool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.