Abstract
Two types of state-switching models for U.S. real output have been proposed: models that switch randomly between states and models that switch states deterministically, as in the threshold autoregressive model of Potter. These models have been justified primarily on how well they fit the sample data, yielding statistically significant estimates of the model coefficients. Here we propose a new approach to the evaluation of an estimated nonlinear time series model that provides a complement to existing methods based on in-sample fit or on out-of-sample forecasting. In this new approach, a battery of distinct nonlinearity tests is applied to the sample data, resulting in a set of p-values for rejecting the null hypothesis of a linear generating mechanism. This set of p-values is taken to be a “stylized fact” characterizing the nonlinear serial dependence in the generating mechanism of the time series. The effectiveness of an estimated nonlinear model for this time series is then evaluated in terms of the congruence between this stylized fact and a set of nonlinearity test results obtained from data simulated using the estimated model. In particular, we derive a portmanteau statistic based on this set of nonlinearity test p-values that allows us to test the proposition that a given model adequately captures the nonlinear serial dependence in the sample data. We apply the method to several estimated state-switching models of U.S. real output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.