Abstract
Evaluation of the spatial and temporal composition of floodplain sediments and soils is critical in the creation of soil management strategies for impacted riverine catchments. The objective of this study was to determine the distribution, and to identify the sources, of particulate trace elements and fallout radionuclides in the catchment of the River Avon (SW England), where sedimentary processes had been altered by reservoir construction in the 1950s. The catchment was compartmentalized into its main functional units namely, cultivated land, pasture, woodland, wet moorland, and channel bank. Surface soils were collected in each unit, along with four strategically-placed cores, all of which were analyzed for particle size, fallout radionuclides and elemental concentrations. Sediment particle sizes and sediment accumulation rates were affected by the construction of the reservoir, specifically the distributions of silt and clay. The concentrations of fertilizer constituent Cr and P were highly correlated in the mid-catchment but were unrelated downstream due to elevated concentrations of Cr from geological deposits. Copper, As, Pb and Sn had variable down-core distributions, with pulses in concentrations due to mining inputs. The contributions of the end-member sources of particulate elements in the sedimentary mixtures were evaluated, quantitatively, using a Bayesian Mixing Model and the cultivated land was identified as a significant contributor to the mixtures, independent of space and time. The results contribute to advances in soil quality and conservation measures as components of a catchment management plan for the Avon, an approach maybe applicable to other small catchments in the UK and internationally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.