Abstract

ObjectiveThis study aimed to evaluate the performance of large language models (LLMs) in the task of abstract screening in systematic review and meta-analysis studies, exploring their effectiveness, efficiency, and potential integration into existing human expert-based workflows.MethodsWe developed automation scripts in Python to interact with the APIs of several LLM tools, including ChatGPT v4.0, ChatGPT v3.5, Google PaLM 2, and Meta Llama 2, and latest tools including ChatGPT v4.0 turbo, ChatGPT v3.5 turbo, Google Gemini 1.0 pro, Meta Llama 3, and Claude 3. This study focused on three databases of abstracts and used them as benchmarks to evaluate the performance of these LLM tools in terms of sensitivity, specificity, and overall accuracy. The results of the LLM tools were compared to human-curated inclusion decisions, gold standard for systematic review and meta-analysis studies.ResultsDifferent LLM tools had varying abilities in abstract screening. Chat GPT v4.0 demonstrated remarkable performance, with balanced sensitivity and specificity, and overall accuracy consistently reaching or exceeding 90%, indicating a high potential for LLMs in abstract screening tasks. The study found that LLMs could provide reliable results with minimal human effort and thus serve as a cost-effective and efficient alternative to traditional abstract screening methods.ConclusionWhile LLM tools are not yet ready to completely replace human experts in abstract screening, they show great promise in revolutionizing the process. They can serve as autonomous AI reviewers, contribute to collaborative workflows with human experts, and integrate with hybrid approaches to develop custom tools for increased efficiency. As technology continues to advance, LLMs are poised to play an increasingly important role in abstract screening, reshaping the workflow of systematic review and meta-analysis studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.