Abstract

BackgroundWe developed a brain-machine interface (BMI) system for poststroke patients with severe hemiplegia to detect event-related desynchronization (ERD) on scalp electroencephalogram (EEG) and to operate a motor-driven hand orthosis combined with neuromuscular electrical stimulation. ERD arises when the excitability of the ipsi-lesional sensorimotor cortex increases.ObjectiveThe aim of this study was to evaluate our hypothesis that motor training using this BMI system could improve severe hemiparesis that is resistant to improvement by conventional rehabilitation. We, therefore, planned and implemented a randomized controlled clinical trial (RCT) to evaluate the effectiveness and safety of intensive rehabilitation using the BMI system.MethodsWe conducted a single blind, multicenter RCT and recruited chronic poststroke patients with severe hemiparesis more than 90 days after onset (N=40). Participants were randomly allocated to the BMI group (n=20) or the control group (n=20). Patients in the BMI group repeated 10-second motor attempts to operate EEG-BMI 40 min every day followed by 40 min of conventional occupational therapy. The interventions were repeated 10 times in 2 weeks. Control participants performed a simple motor imagery without servo-action of the orthosis, and electrostimulation was given for 10 seconds for 40 min, similar to the BMI intervention. Overall, 40 min of conventional occupational therapy was also given every day after the control intervention, which was also repeated 10 times in 2 weeks. Motor functions and electrophysiological phenotypes of the paretic hands were characterized before (baseline), immediately after (post), and 4 weeks after (follow-up) the intervention. Improvement in the upper extremity score of the Fugl-Meyer assessment between baseline and follow-up was the main outcome of this study.ResultsRecruitment started in March 2017 and ended in July 2018. This trial is currently in the data correcting phase. This RCT is expected to be completed by October 31, 2018.ConclusionsNo widely accepted intervention has been established to improve finger function of chronic poststroke patients with severe hemiparesis. The results of this study will provide clinical data for regulatory approval and novel, important understanding of the role of sensory-motor feedback based on BMI to induce neural plasticity and motor recovery.Trial RegistrationUMIN Clinical Trials Registry UMIN000026372; https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi? recptno=R000030299 (Archived by WebCite at http://www.webcitation.org/743zBJj3D)International Registered Report Identifier (IRRID)DERR1-10.2196/12339

Highlights

  • BackgroundStroke is a common disorder and one of the main causes of disability worldwide [1]

  • The results of this study will provide clinical data for regulatory approval and novel, important understanding of the role of sensory-motor feedback based on brain-machine interface (BMI) to induce neural plasticity and motor recovery

  • A systematic review based on a meta-analysis of the effectiveness of neurorehabilitation approaches reported that constraint-induced movement therapy (CIMT), electromyographic biofeedback, mental practice with motor imagery, and robotic interventions are all favorable for recovery of arm motor function [7]

Read more

Summary

Introduction

BackgroundStroke is a common disorder and one of the main causes of disability worldwide [1]. About 60% of stroke survivors reacquire the ability to walk independently, only 15% to 20% of them can use their affected upper limb practically [2-4]. Restoring the function of the paretic upper extremity is a challenging goal of rehabilitation. Relevant interventional approaches to improve the paretic limb itself have been developed. A systematic review based on a meta-analysis of the effectiveness of neurorehabilitation approaches reported that constraint-induced movement therapy (CIMT), electromyographic biofeedback, mental practice with motor imagery, and robotic interventions are all favorable for recovery of arm motor function [7]. We developed a brain-machine interface (BMI) system for poststroke patients with severe hemiplegia to detect event-related desynchronization (ERD) on scalp electroencephalogram (EEG) and to operate a motor-driven hand orthosis combined with neuromuscular electrical stimulation. ERD arises when the excitability of the ipsi-lesional sensorimotor cortex increases

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call