Abstract

The calculations showed that whiskerization of the reinforcement of the structural material of multilaminate shells makes it possible in some cases to increase the fundamental vibration frequency of the structure up to 15–20%. In combination with the well-known [1] effect of improved strength characteristics for a whiskerized composite in the transverse and shear directions, this finding allows us to conclude that whiskerized structural materials are more efficient than ordinary laminated composites in shell-type load-bearing structures. Here, the greatest benefit can be expected in the case of whiskers which have higher elastic moduli than the main reinforcement. Since considerably higher reinforcement intensities can be achieved in whiskerized laminated composites than in composites with a reinforcement characterized by an arbitrary three-dimensional structure, it can be concluded on the basis of the results obtained here that, at least for shells of moderate thickness (10 < R/h ≲ 50), whiskerized composites are the optimum structural material for load-bearing shells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.