Abstract

This study presents a revised and calibrated Soil Conservation Service (SCS) curve number (CN) rainfall runoff model for predicting runoff in Malaysia using a new power correlation Ia = SL, where L represents the initial abstraction coefficient ratio. The traditional SCS-CN model with the proposed relation Ia = 0.2S is found to be unreliable, and the revised model exhibits improved accuracy. The study emphasizes the need to design flood control infrastructure based on the maximum estimated runoff amount to avoid underestimation of the runoff volume. If the flood control infrastructure is designed based on the optimum CN0.2 values, it could lead to an underestimation of the runoff volume of 50,100 m3 per 1 km2 catchment area in Malaysia. The forest areas reduced by 25% in Peninsular Malaysia from the 1970s to the 1990s and 9% in East Malaysia from the 1980s to the 2010s, which was accompanied by an increase in decadal runoff difference, with the most significant rises of 108% in Peninsular Malaysia from the 1970s to the 1990s and 32% in East Malaysia from the 1980s to the 2010s. This study recommends taking land use changes into account during flood prevention planning to effectively address flood issues. Overall, the findings of this study have significant implications for flood prevention and land use management in Malaysia. The revised model presents a viable alternative to the conventional SCS-CN model, with a focus on estimating the maximum runoff amount and accounting for land use alterations in flood prevention planning. This approach has the potential to enhance flood management in the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call