Abstract

Smear layer removal from the root canal wall involves the use of 17% EDTA and 5.25% sodium hypochlorite, which thereby improves the adhesion of obturating materials to root dentin. But these chemical irrigants have shown to decrease micro hardness, increase roughness, cause erosion and reduce the root dentin fracture toughness. To combat these adverse effects, studies can be focussed on the remineralisation of the erosive root dentin and this novel idea has been utilized in the present study. To evaluate the micro hardness of erosive root dentin when Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) was used as a final irrigant and its influence on resin sealer bonding tested by push-out bond strength method. Sixty extracted maxillary incisors were divided into three groups based on the final irrigation protocol. Group 1-normal saline, Group 2-17% EDTA (Ethylene Diamine Tetraacetic Acid) + 5.25% NaOCl (Sodium Hypochlorite), Group 3 - 17% EDTA + 5.25% NaOCl + CPP-ACP; each group was divided into two subgroups. Half the specimens of each group were evaluated for Vicker's micro hardness test after the treatment. In continuation with the above methodology the remaining specimens were tested for push-out bond strength after obturation of the specimens with self etch adhesive resin sealer and conventional 6% gutta percha cones. Micro hardness was statistically analysed using Kruskal Wallis test and push-out bond strength was evaluated using Mann Whitney test and paired t-test. CPP-ACP treated group showed increased micro hardness (p<0.05). There was no statistically significant difference between the push-out bond strength values between group EDTA + NaOCl group and EDTA + NaOCl + CPP-ACP group. Within the limitations of this study it can be concluded that, CPP-ACP improved the micro hardness of erosive root dentin and is not affecting its bond strength. Therefore, CPP-ACP may be used before bonding procedures for promoting remineralization of root dentin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.