Abstract

Performance monitoring deficits have been proposed as a cognitive marker involved in the development of attention-deficit/hyperactivity disorder (ADHD), but it is unclear whether these deficits cause impairment when established action sequences conflict with environmental demands. The current study applies a novel data-analytic technique to a well-established sequence learning paradigm to investigate reactions to disruption of learned behavior in ADHD. Children (ages 8-12) with and without ADHD completed a serial reaction time task in which they implicitly learned an 8-item sequence of keypresses over 5 training blocks. The training sequence was replaced with a novel sequence in a transfer block, and returned in 2 subsequent recovery blocks. Response time (RT) data were fit by a Bayesian hierarchical version of the linear ballistic accumulator model, which permitted the dissociation of learning processes from performance monitoring effects on RT. Sequence-specific learning on the task was reflected in the systematic reduction of the amount of evidence required to initiate a response, and was unimpaired in ADHD. When the novel sequence onset, typically developing children displayed a shift in their attentional state while children with ADHD did not, leading to worse subsequent performance compared to controls. Children with ADHD are not impaired in learning novel action sequences, but display difficulty monitoring their implementation and engaging top-down control when they become inadequate. These results support theories of ADHD that highlight the interactions between monitoring processes and changing cognitive demands as the cause of self-regulation and information-processing problems in the disorder. (PsycINFO Database Record

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.