Abstract

With the expansion of steel production via electric arc furnaces, an increase in dust generation—a by-product of these operations—poses substantial challenges. These difficulties stem from land use restrictions for large-scale dust waste storage and the environmental implications of heavy metal contamination inherent in the dust. In an effort to promote the repurposing of this potentially hazardous solid waste, this study examines the concentration and leachability of various heavy metals in this dust. Digestion of the dust samples was carried out in a controlled laboratory setting, after which the concentrations of iron (Fe), magnesium (Mg), zinc (Zn), manganese (Mn), nickel (Ni), lead (Pb), cadmium (Cd), and cobalt (Co) were determined using flame atomic absorption spectrometry. The mean concentrations of these heavy metals in the dust were found to be in the following descending order (in mg/kg): Fe> Mg> Zn> Mn> Ni> Pb> Cu> Cd> Co. Water leaching tests were subsequently conducted, revealing that Co and Cd exhibited the greatest leachability at varying pH levels. Conversely, Fe and Ni displayed minimal leachability. These findings have significant implications for the reuse and environmental management of electric arc furnace dust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.