Abstract

BackgroundSchizophrenia is a serious mental disorder that significantly impacts social functioning and quality of life. However, current diagnostic methods lack objective biomarker support. While some studies have indicated differences in audio features between patients with schizophrenia and healthy controls, these findings are influenced by demographic information and variations in experimental paradigms. Therefore, it is crucial to explore stable and reliable audio biomarkers for an auxiliary diagnosis and disease severity prediction of schizophrenia. MethodA total of 130 individuals (65 patients with schizophrenia and 65 healthy controls) read three fixed texts containing positive, neutral, and negative emotions, and recorded them. All audio signals were preprocessed and acoustic features were extracted by a librosa-0.9.2 toolkit. Independent sample t-tests were performed on two sets of acoustic features, and Pearson correlation on the acoustic features and Positive and Negative Syndrome Scale (PANSS) scores of the schizophrenia group. Classification algorithms in scikit-learn were used to diagnose schizophrenia and predict the level of negative symptoms. ResultsSignificant differences were observed between the two groups in the mfcc_8, mfcc_11, and mfcc_33 of mel-frequency cepstral coefficient (MFCC). Furthermore, a significant correlation was found between mfcc_7 and the negative PANSS scores. Through acoustic features, we could not only differentiate patients with schizophrenia from healthy controls with an accuracy of 0.815 but also predict the grade of the negative symptoms in schizophrenia with an average accuracy of 0.691. ConclusionsThe results demonstrated the considerable potential of acoustic characteristics as reliable biomarkers for diagnosing schizophrenia and predicting clinical symptoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.