Abstract

AbstractObjective A recent evolution in fluid dynamics has been the consideration of nanoliquids which retains exceptional thermal conductivity characteristics and upsurge heat transportation in fluids. Inspired by this, the current attempt develops a nonlinear mathematical model (Williamson fluid) towards moving surface heated convectively. Formulated problem further encompasses thermophoresis, magnetic dipole, heat source, Brownian diffusion, thermal radiation and thermo-solutal convective conditions. Upshots are simulated and unveiled graphically. Drag force along with heat/mass transportation rates is addressed numerically.Method The dimensionless expressions are highly non-linear and exact/analytic computations for such expressions are not possible. Thus we employed numeric (bvp4c) scheme for solution development.Conclusions Temperature of Williamson nanofluid intesifies through larger Nb (Brownian movement) factor and Nt (thermophoretic variable). Moreover, Buongiorno relation has reverse behavior for concentration ϕ(η) of Williamson nanofluid regarding Nt and Nt. Transportation rate of heat dwindles against both Nt and Nb.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call