Abstract

Interactions of plasmonic nanocolloids such as gold nanoparticles and nanorods with proximal dye emitters result in efficient quenching of the dye photoluminescence (PL). This has become a popular strategy for developing analytical biosensors relying on this quenching process for signal transduction. Here, we report on the use of stable PEGylated gold nanoparticles, covalently coupled to dye-labeled peptides, as sensitive optically addressable sensors for determining the catalytic efficiency of the human matrix metalloproteinase-14 (MMP-14), a cancer biomarker. We exploit real-time dye PL recovery triggered by MMP-14 hydrolysis of the AuNP-peptide-dye to extract quantitative analysis of the proteolysis kinetics. Sub-nanomolar limit of detections for MMP-14 has been achieved using our hybrid bioconjugates. In addition, we have used theoretical considerations within a diffusion-collision framework to derive enzyme substrate hydrolysis and inhibition kinetics equations, which allowed us to describe the complexity and irregularity of enzymatic proteolysis of nanosurface-immobilized peptide substrates. Our findings offer a great strategy for the development of highly sensitive and stable biosensors for cancer detection and imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call