Abstract

Abstract. Afforestation is a strategy to sequester atmospheric carbon in the terrestrial system and to enhance ecosystem services. Iceland's large areas of formerly vegetated and now degraded ecosystems therefore have a high potential to act as carbon sinks. Consequently, the ecological restoration of these landscape systems is part of climate mitigation programmes supported by the Icelandic government. The aim of this study was to explore the change in the soil organic carbon (SOC) pools and to estimate the SOC sequestration potential during the re-establishment of birch forest on severely degraded land. Differently aged afforested mountain birch sites (15, 20, 25 and 50 years) were compared to sites of severely degraded land, naturally growing remnants of mountain birch woodland and grasslands which were re-vegetated using fertilizer and grass seeds 50 years ago. The soil was sampled to estimate the SOC stocks and for physical fractionation to characterize the quality of the SOC. The results of our study show that the severely degraded soils can potentially sequester an additional 20 t C ha−1 (0–30 cm) to reach the SOC stock of naturally growing birch woodlands. After 50 years of birch growth, the SOC stock is significantly lower than that of a naturally growing birch woodland, suggesting that afforested stands could sequester additional SOC beyond 50 years of growth. The SOC fractionation revealed that at all the tested sites most of the carbon was stored in the <63 µm fraction. However, after 50 years of birch growth on severely degraded soils the particulate organic matter (POM) fraction was significantly enriched most (+12 t POM-C ha−1) in the top 30 cm. The study also found a doubling of the dissolved organic carbon (DOC) concentration after 50 years of birch growth. Therefore and due to the absence of any increase in the tested mineral-associated SOC fractions, we assume that the afforestation process evokes a carbon deposition in the labile SOC pools. Consequently, parts of this plant-derived, labile SOC may be partly released into the atmosphere during the process of stabilization with the mineral soil phases in the future. Our results are limited in their scope since the selected sites do not fully reflect the heterogeneity of landscape evolution and the range of soil degradation conditions. As an alternative, we suggest using repeated plot measurements instead of space-for-time substitution approaches for testing C changes in severely degraded volcanic soils. Our findings clearly show that detailed measurements on the SOC quality are needed to estimate the SOC sequestration potential of restoration activities on severely degraded volcanic soils, rather than only measuring SOC concentration and SOC stocks.

Highlights

  • 1.1 Iceland’s soil carbon sequestration potential by land restorationThe Icelandic government approved activities including revegetation and afforestation in the 1990s to increase the terrestrial carbon sequestration from the atmosphere (Sigurdsson and Snorrason, 2000; Aradottir and Arnalds, 2001; Ministry for the Environment, 2007)

  • The results indicate that afforestation by mountain birch, and the establishment of birch woodlands, can significantly increase the soil organic carbon (SOC) stock (0–30 cm) (Birch15–Birch50), which is in accordance with Icelandic studies given in the literature

  • Our results indicate that the change in SOC stocks during afforestation with mountain birch on severely degraded soils (Fig. 2) is comparable with those given for shrub encroachment in the cited literature

Read more

Summary

Introduction

1.1 Iceland’s soil carbon sequestration potential by land restorationThe Icelandic government approved activities including revegetation and afforestation in the 1990s to increase the terrestrial carbon sequestration from the atmosphere (Sigurdsson and Snorrason, 2000; Aradottir and Arnalds, 2001; Ministry for the Environment, 2007). Approximately 45 000 km (∼ 45 %) of the land area is covered by sparsely vegetated areas which range to barren deserts, in addition to disturbed areas with reduced carbon levels (Arnalds, 2015b). These landscapes are characterized by limited vegetation cover on vitric soil types (Arnalds et al, 2013) with low biomass production and low SOC stocks (Óskarsson et al, 2004). Vitrisols (Vitric Andosols and Leptosols), which are the typical soil types of the deserts, contain less than 45 t C ha−1 on average (Óskarsson et al, 2004)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.