Abstract

The bactericidal activity of the physiological oxidant hypochlorous acid (HOCl) is commonly studied in a variety of laboratory media. Reactive with numerous targets, HOCl will rapidly lose its toxicity via reduction or be converted to chloramines and other less toxic species. The objective of this study was to test the influence of various media, temperature and reaction time on the toxicity of HOCl. After incubating bacteria in media dosed with reagent HOCl, the bactericidal outcome was measured by colony forming ability. In parallel, we determined the HOCl and chloramine content after dosing media alone. Our results showed that more reagent HOCl was required to kill bacteria in culture media than in aqueous buffer, and this corresponded to the lower concentration of reactive chlorine species achieved in the media. RPMI and MOPS minimal medium retained significant oxidising equivalents after HOCl-dosing, but more nutrient-rich media such as MEM, DMEM, LB and TSB, had higher scavenging capacity. Other factors that lowered the bactericidal strength of HOCl were longer lag-times and raised temperature when pre-dosing media, and insufficient incubation time of cells with the HOCl-treated media. In summary, we demonstrate that the choice of media as well as procedural details within experiments crucially impact the cellular toxicity of HOCl. These factors influence the nature and concentration of oxidants generated, and therefore are critical in affecting cellular responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.