Abstract
This study presents preliminary results from recent bathymetric LiDAR-guided surveys of submerged archaeological landscapes in the Apalachee Bay off the coast of Florida. We show how bathymetric LiDAR can re-identify previously recorded archaeological sites and identify new cultural deposits at shallow depths and help aid SCUBA surveys of submerged environments. While most prior archaeological applications of bathymetric LiDAR have focused on shipwrecks and historic era sites, our case study demonstrates that bathymetric LiDAR is capable of detecting Holocene and Pleistocene era archaeological sites as well. Detecting and eventually characterizing these ancient deposits will greatly expand our understanding of settlement trends when sea levels were lower and may provide insights into how some of the earliest coastal populations adapted to this novel and changing environment. Our SCUBA surveys also elucidate the impact of local environmental conditions of the applicability of deploying bathymetric LiDAR; specifically, eel grass cover does not hinder LiDAR capabilities, while high rates of sedimentation greatly reduce success in identifying archaeological deposits. Overall, our results show promise in the future of applying remote sensing to study shallow submerged archaeological landscapes, which can help improve our understanding of human–environment dynamics prior to and during periods of sea level change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.