Abstract

Natural products, particularly as anticancer agents, continue to provide prototypes for pharmacologically active compounds. Compared with traditional two-dimensional (2D) approaches, 3D cell cultures have shown a clear role in drug discovery and development as they more closely resemble in vivo cell environments and come closer to capturing the in vivo functions of organs and tissues. The growing interest in using more physiological in vitro cancer models has driven the adoption of 3D cell cultures in evaluating anticancer activities of natural products. Here, we establish a protocol to use a novel 3D culture system to evaluate the therapeutic efficacy of epigallocatechin gallate (EGCG), a plant-based natural compound, in head and neck cancer cells. Our findings reveal that the sensitivity of natural products in 3D culture models may differ markedly from that obtained using 2D cultures, suggesting that 3D models will become a more reliable alternative to minimize misleading data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.