Abstract

The on-road remote sensing test was conducted in Zhengzhou to obtain a large dataset of ammonia emissions from in-use vehicles. The ammonia emission characteristics and high-emitter vehicles of different manufacture years, vehicles with different emission standards, and vehicles with different types of other fuel vehicles were analysed. The results show that the average ammonia emission concentration obtained through remote sensing tests fluctuated after the initial reduction. The ammonia emission factors generally range from 0.30 to 0.47g/kg, 0.34-0.50g/kg and 0.29-0.60g/kg for gasoline vehicles, diesel vehicles and other fuel vehicles respectively. Improving the emission standards of new vehicles has a direct role in reducing exhaust pollution from in-use vehicles. However, after the China III emission standard, the ammonia emission level showed a stable trend and no obvious downward trend. The distributions of ammonia emission rates were highly skewed as the dirtiest 10% of vehicles emitted much higher emissions than other vehicles. In the group with the highest emissions, the emissions from other fuel vehicles were lower than those from gasoline and diesel vehicles. However, the percentage of high-emitters decreased with newer emission standards for vehicles. The results indicate that remote sensing test technology will be very effective in screening vehicles with high ammonia emissions. However, some clean vehicles can be exempted from annual inspection through remote sensing test technology. Finally, based on the comprehensive analysis of big data from remote sensing, the ammonia emissions of diesel vehicles and other fuel vehicles cannot be ignored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.