Abstract
Nonsense-mediated mRNA decay (NMD) and its regulation play an important role in eliminating faulty transcripts and controlling gene expression. However, measuring NMD activity and characterizing its targets remain challenging. In this study, we set out to establish Nanopore direct RNA sequencing in combination with quantitative real-time PCR (qPCR) as a method for analyzing NMD activity and its targets in cultured cell lines and clinical tissue samples. Nanopore RNA sequencing could detect more isoforms than short-read sequencing, especially in identifying novel isoforms and predicting isoforms annotated with premature termination codon (PTC). Changes in transcriptional isoforms of five genes (PRS, RPL12, SRSF2, PPIA, and TMEM208) could faithfully reflect NMD activity in the three cell lines and prostate cancer (PCA) samples. NMD activity in PCA samples varied, but some patients showed an increased trend. Together, Nanopore sequencing was superior in identifying NMD targets and evaluating NMD activity compared with short-read sequencing, and the NMD markers we screened may be used for measuring NMD activity in clinical patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.