Abstract
Planar gated blood pool (GBP-P) radionuclide imaging is a valuable non-invasive technique for assessing left ventricular ejection fraction (LVEF). Serial cardiac imaging can be performed to monitor the potential decline in LVEF among patients undergoing cardiotoxic chemotherapy. Consequently, accurate LVEF determination becomes paramount. While commercial software programs have enhanced the LVEF values' reproducibility, concerns remain regarding their accuracy. This study aimed to generate a database of GBP-P studies with known LVEF values using Monte Carlo simulations and to assess LVEF values' accuracy using four commercial software programs.We utilised anthropomorphic 4D-XCAT models to generate 64 clinically realistic GBP-P studies with Monte Carlo simulations. Four commercial software programs (Alfanuclear, Siemens, General Electric Xeleris, and Mediso Tera-Tomo) were used to process these simulated studies. The accuracy and reproducibility of the LVEF values determined with these software programs and the intra- and inter-observer reproducibility of the LVEF values were assessed.Our study revealed a strong correlation between LVEF values calculated by the software programs and the true LVEF values derived from the 4D-XCAT models. However, all the software programs slightly underestimated LVEF at lower LVEF values. Intra- and inter-observer reliability for LVEF measurements was excellent.Accurate LVEF assessment is crucial for determining the patient's cardiac function before initiating and during chemotherapy treatment. The observed underestimation, particularly at lower LVEF values, emphasises the need for the accurate and reproducible determination of these values to avoid excluding suitable candidates for chemotherapy. The software programs' excellent intra- and inter-observer reliability highlights their potential to reduce subjectivity when using the semi-automatic processing option.This study confirms the accuracy and reliability of these commercial software programs in determining LVEF values from simulated GBP-P studies. Future research should investigate strategies to mitigate the underestimation biases and extend findings to diverse patient populations.Gated blood pool studies, left ventricular ejection fraction, Monte Carlo simulations, 4D-XCAT models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.