Abstract
This paper aims to evaluate the accuracy of probability calculation using Chebyshev’s inequality based on simulation study. We consider symmetric (Normal (3,1.52 ), Laplace (3, 2 ) Beta (7.7 ) t5) positively skewed, negatively skewed (5 χ2, Beta (3, 8 ) Gamma (5,1)), (Beta (7, 2)), Exponential (5) and Uniform (0, 1 ) distributions, fx(x) in our simulation study to measure the performance of Chebyshev’s inequality. We then calculate Pr (μ − kσ ≤ X ≤ μ + kσ ) for ~ ( ) X X f x , μ = E ( X ) and σ 2 =Var ( X ), and compare this with the approximated probability obtained from Chebyshev’s inequality to measure the accuracy of Chebyshev’s inequality. From our simulation study, it is observed that loss due to using Chebyshev’s inequality for probability calculation is the least and the maximum when fx(x) is the Exponential and the Beta (symmetric) distributions, respectively for k ≥ 2.5. Moreover, the value of Pr (μ − kσ ≤ X ≤ μ + kσ ) calculated using Chebyshev’s inequality is underapproximated for all the probability distributions considered in the study. Dhaka Univ. J. Sci. 71(1): 76-81, 2023 (Jan)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.