Abstract
BackgroundMicrobiome studies commonly use 16S rRNA gene amplicon sequencing to characterize microbial communities. Errors introduced at multiple steps in this process can affect the interpretation of the data. Here we evaluate the accuracy of operational taxonomic unit (OTU) generation, taxonomic classification, alpha- and beta-diversity measures for different settings in QIIME, MOTHUR and a pplacer-based classification pipeline, using a novel software package: DECARD.ResultsIn-silico we generated 100 synthetic bacterial communities approximating human stool microbiomes to be used as a gold-standard for evaluating the colligative performance of microbiome analysis software. Our synthetic data closely matched the composition and complexity of actual healthy human stool microbiomes. Genus-level taxonomic classification was correctly done for only 50.4–74.8% of the source organisms. Miscall rates varied from 11.9 to 23.5%. Species-level classification was less successful, (6.9–18.9% correct); miscall rates were comparable to those of genus-level targets (12.5–26.2%). The degree of miscall varied by clade of organism, pipeline and specific settings used. OTU generation accuracy varied by strategy (closed, de novo or subsampling), reference database, algorithm and software implementation. Shannon diversity estimation accuracy correlated generally with OTU-generation accuracy. Beta-diversity estimates with Double Principle Coordinate Analysis (DPCoA) were more robust against errors introduced in processing than Weighted UniFrac. The settings suggested in the tutorials were among the worst performing in all outcomes tested.ConclusionsEven when using the same classification pipeline, the specific OTU-generation strategy, reference database and downstream analysis methods selection can have a dramatic effect on the accuracy of taxonomic classification, and alpha- and beta-diversity estimation. Even minor changes in settings adversely affected the accuracy of the results, bringing them far from the best-observed result. Thus, specific details of how a pipeline is used (including OTU generation strategy, reference sets, clustering algorithm and specific software implementation) should be specified in the methods section of all microbiome studies. Researchers should evaluate their chosen pipeline and settings to confirm it can adequately answer the research question rather than assuming the tutorial or standard-operating-procedure settings will be adequate or optimal.
Highlights
Microbiome studies commonly use 16S rRNA gene amplicon sequencing to characterize microbial communities
Researchers often proceed to a classification step to identify each operational taxonomic unit (OTU) as representing a given already-known organism in a shared reference database
We developed a software package DECARD (Detailed Evaluation Creation and Analysis of Read Data) to generate realistic synthetic datasets for which we have a known source of the sequences to be used as a gold standard when evaluating microbiome analysis software
Summary
Microbiome studies commonly use 16S rRNA gene amplicon sequencing to characterize microbial communities. We evaluate the accuracy of operational taxonomic unit (OTU) generation, taxonomic classification, alpha- and beta-diversity measures for different settings in QIIME, MOTHUR and a pplacer-based classification pipeline, using a novel software package: DECARD. Next-generation sequencing of amplicons from a taxonomically informative gene (like the small subunit ribosomal RNA gene) is useful for estimating the composition of microbial communities and has been widely applied in diverse environments. Researchers often proceed to a classification step to identify each OTU as representing a given already-known organism in a shared reference database. This process can connect the OTU sequences to the larger body of microbiological research, converting associations into a deeper understanding of the members of the community and their capabilities. Even within a given analysis pipeline, there are a variety of settings to be selected: Which OTU generating strategy should be used; which clustering algorithm; which classifier and reference database?
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.