Abstract

We explore the effects of the deflagration to detonation transition (DDT) density on the production of 56Ni in thermonuclear supernova (SN) explosions (Type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear SNe with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of 56Ni masses to those inferred from observations. Within this framework, we utilize a more realistic "simmered" white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of 56Ni and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range (1–3) ×107 g cm−3. We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 ± 0.004 M☉ for a 1 Z☉ increase in metallicity evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 ± 0.004 M☉ decrease in the 56Ni yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.