Abstract

Surface reconstruction has been studied thoroughly, but very little work has been done to address its evaluation. In this article, we propose new visibility-based metrics to assess the completeness and accuracy of three-dimensional meshes based on a point cloud of higher accuracy than the one from which the reconstruction has been computed. We use the position from which each high-quality point has been acquired to compute the corresponding ray of free space. Based on the intersections between each ray and the reconstructed surface, our metrics allow evaluating both the global coherency of the reconstruction and the accuracy at close range. We validate this evaluation protocol by surveying several open-source algorithms as well as a piece of licensed software on three data sets. The results confirm the relevance of assessi ng local and global accuracy separately since algorithms sometimes fail at guaranteeing both simultaneously. In addition, algorithms making use of sensor positions perform better than the ones relying only on points and normals, indicating a potentially significant added value of this piece of information. Our implementation is available at https://github.com/umrlastig/SurfaceReconEval.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.