Abstract

To address the inability of current ranking systems to support subtopic retrieval, two main post-processing techniques of search results have been investigated: clustering and diversification. In this paper we present a comparative study of their performance, using a set of complementary evaluation measures that can be applied to both partitions and ranked lists, and two specialized test collections focusing on broad and ambiguous queries, respectively. The main finding of our experiments is that diversification of top hits is more useful for quick coverage of distinct subtopics whereas clustering is better for full retrieval of single subtopics, with a better balance in performance achieved through generating multiple subsets of diverse search results. We also found that there is little scope for improvement over the search engine baseline unless we are interested in strict full-subtopic retrieval, and that search results clustering methods do not perform well on queries with low divergence subtopics, mainly due to the difficulty of generating discriminative cluster labels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.