Abstract

Abstract. We have used a high-precision, high-resolution digital terrain model (DTM) of the NASA Mars 2020 rover Perseverance landing site in Jezero crater based on mosaicked images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (MRO HiRISE) camera as a reference dataset to evaluate DTMs based on Mars Express High Resolution Stereo Camera (MEX HRSC) and MRO Context camera (CTX) images. Results are consistent with our earlier HRSC-HiRISE comparisons at the Mars Science Laboratory (MSL) Curiosity landing site in Gale crater, confirming that those results were not compromised by the small area compared and potential problems with spatial registration. Specifically, height errors are on the order of half a pixel and correspond to an image matching error of 0.2–0.3 pixel but estimates of horizontal resolution are 10–20 pixels. Products from the HRSC team pipeline at DLR are smoother but more precise vertically than those produced by using the commercial stereo package SOCET SET®. The DLR products are also homogenous in quality, whereas the SOCET products are less smoothed and have higher errors in rougher terrain. Despite this weak variation, our results are consistent with a rule of thumb of 0.2–0.3 pixel matching precision based on many prior studies. Horizontal resolution is significantly coarser than the DTM ground sample distance (GSD), which is typically 3–5 pixels.

Highlights

  • The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 XXIV ISPRS Congress (2020 edition).

  • (56@ =?

  • A5.; A52 6;A2?.0A6C2 :2.@B?2:2;A@ B@21 6; A52=.@A6@0?2.A21.;136AA21A

Read more

Summary

Introduction

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 XXIV ISPRS Congress (2020 edition). (56@ =?

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.