Abstract

The U.S. Forest Service, Forest Inventory and Analysis (FIA) program is tasked with making and reporting estimates of various forest attributes using a design-based network of permanent sampling plots. To make its estimates more precise, FIA uses a technique known as post-stratification to group plots into more homogenous classes, which helps lower variance when deriving population means. Currently FIA uses a nationally available map of tree canopy cover for post-stratification, which tends to work well for forest area estimates but less so for structural attributes like volume. Here we explore the use of new statewide digital aerial photogrammetric (DAP) point clouds developed from stereo imagery collected by the National Agricultural Imagery Program (NAIP) to improve these estimates in the southeastern mixed hardwood forests of Tennessee and Virginia, United States (U.S.). Our objectives are to 1. evaluate the relative quality of NAIP DAP point clouds using airborne LiDAR and FIA tree height measurements, and 2. assess the ability of NAIP digital height models (DHMs) to improve operational forest inventory estimates above the gains already achieved from FIA’s current post-stratification approach. Our results show the NAIP point clouds were moderately to strongly correlated with FIA field measured maximum tree heights (average Pearson’s r = 0.74) with a slight negative bias (−1.56 m) and an RMSE error of ~4.0 m. The NAIP point cloud heights were also more accurate for softwoods (R2s = 0.60–0.79) than hardwoods (R2s = 0.33–0.50) with an error structure that was consistent across multiple years of FIA measurements. Several factors served to degrade the relationship between the NAIP point clouds and FIA data, including a lack of 3D points in areas of advanced hardwood senescence, spurious height values in deep shadows and imprecision of FIA plot locations (which were estimated to be off the true locations by +/− 8 m). Using NAIP strata maps for post-stratification yielded forest volume estimates that were 31% more precise on average than estimates stratified with tree canopy cover data. Combining NAIP DHMs with forest type information from national map products helped improve stratification performance, especially for softwoods. The monetary value of using NAIP height maps to post-stratify FIA survey unit total volume estimates was USD 1.8 million vs. the costs of installing more field plots to achieve similar precision gains. Overall, our results show the benefit and growing feasibility of using NAIP point clouds to improve FIA’s operational forest inventory estimates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call