Abstract

In this paper, we describe a novel intention recognition approach based on the representation of state information in a cooperative human-robot environment. We compare the output of the intention recognition algorithms to those of an experiment involving humans attempting to recognize the same intentions in a manufacturing kitting domain. States are represented by a combination of spatial relationships in a Cartesian frame along with cardinal direction information. Based upon a set of predefined high-level states relationships that must be true for future actions to occur, a robot can use the approaches described in this paper to infer the likelihood of subsequent actions occurring. This would enable the robot to better help the human with the operation or, at a minimum, better stay out of his or her way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.