Abstract

Many hydrological and agricultural studies require simulations of weather variables reflecting observed spatial and temporal dependence at multiple point locations. This paper assesses three multi-site daily rainfall generators for their ability to model different spatio-temporal rainfall attributes over the study area. The approaches considered consist of a multi-site modified Markov model (MMM), a reordering method for reconstructing space–time variability, and a nonparametric k-nearest neighbour (KNN) model. Our results indicate that all the approaches reproduce adequately the observed spatio-temporal pattern of the multi-site daily rainfall. However, different techniques used to signify longer time scale observed temporal and spatial dependences in the simulated sequences, reproduce these characteristics with varying successes. While each approach comes with its own advantages and disadvantages, the MMM has an overall advantage in offering a mechanism for modelling varying orders of serial dependence at each point location, while still maintaining the observed spatial dependence with sufficient accuracy. The reordering method is simple and intuitive and produces good results. However, it is primarily driven by the reshuffling of the simulated values across realisations and therefore may not be suited in applications where data length is limited or in situations where the simulation process is governed by exogenous conditioning variables. For example, in downscaling studies where KNN and MMM can be used with confidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.