Abstract

Prior work has shown that humans can successfully identify letters that are constructed with a sparse array of dots, wherein the dot pattern reflects the strokes that would normally be used to fashion a given letter. In the present work the dots were briefly displayed, one at a time in sequence, varying the spatial order in which they were shown. A forward sequence was spatially ordered as though one were passing a stroke across the dots to connect them. Experiments compared this baseline condition to the following three conditions: a) the dot sequence was spatially ordered, but in the reverse direction from how letter strokes might normally be written; b) the dots in each stroke of the letter were displayed in a random order; c) the sequence of displayed dots were chosen for display from any location in the letter. Significant differences were found between the baseline condition and all three of the comparison conditions, with letter recognition being far worse for the random conditions than for conditions that provided consistent spatial ordering of dot sequences. These findings show that spatial order is critical for integration of shape cues that have been sequentially displayed.

Highlights

  • Experience dictates that humans can more readily perceive objects when the boundary cues are displayed in an orderly, systematic manner

  • Significant differences were found between the baseline condition and all three of the comparison conditions, with letter recognition being far worse for the random conditions than for conditions that provided consistent spatial ordering of dot sequences. These findings show that spatial order is critical for integration of shape cues that have been sequentially displayed

  • The mechanisms providing for shape recognition often draw on the concept of closure proposed by Gestalt psychologists, wherein the parts of an object contribute to generating an integrated whole

Read more

Summary

Introduction

Experience dictates that humans can more readily perceive objects when the boundary cues are displayed in an orderly, systematic manner. The mechanisms providing for shape recognition often draw on the concept of closure proposed by Gestalt psychologists, wherein the parts of an object contribute to generating an integrated whole. When this integration is disrupted by inconsistent presentation of the shape cues, one is less likely to recognize that object, as edge detection is the first step in object recognition [2,3].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.