Abstract

BackgroundBrazilian Amazon forests contain a large stock of carbon that could be released into the atmosphere as a result of land use and cover change. To quantify the carbon stocks, Brazil has forest inventory plots from different sources, but they are unstandardized and not always available to the scientific community. Considering the Brazilian Amazon extension, the use of remote sensing, combined with forest inventory plots, is one of the best options to estimate forest aboveground biomass (AGB). Nevertheless, the combination of limited forest inventory data and different remote sensing products has resulted in significant differences in the spatial distribution of AGB estimates. This study evaluates the spatial coverage of AGB data (forest inventory plots, AGB maps and remote sensing products) in undisturbed forests in the Brazilian Amazon. Additionally, we analyze the interconnection between these data and AGB stakeholders producing the information. Specifically, we provide the first benchmark of the existing field plots in terms of their size, frequency, and spatial distribution.ResultsWe synthesized the coverage of forest inventory plots, AGB maps and airborne light detection and ranging (LiDAR) transects of the Brazilian Amazon. Although several extensive forest inventories have been implemented, these AGB data cover a small fraction of this region (e.g., central Amazon remains largely uncovered). Although the use of new technology such as airborne LiDAR cover a significant extension of AGB surveys, these data and forest plots represent only 1% of the entire forest area of the Brazilian Amazon.ConclusionsConsidering that several institutions involved in forest inventories of the Brazilian Amazon have different goals, protocols, and time frames for forest surveys, forest inventory data of the Brazilian Amazon remain unstandardized. Research funding agencies have a very important role in establishing a clear sharing policy to make data free and open as well as in harmonizing the collection procedure. Nevertheless, the use of old and new forest inventory plots combined with airborne LiDAR data and satellite images will likely reduce the uncertainty of the AGB distribution of the Brazilian Amazon.

Highlights

  • Brazilian Amazon forests contain a large stock of carbon that could be released into the atmosphere as a result of land use and cover change

  • This study focused on undisturbed forests of the Brazilian Amazon biome, an area of approximately 3,139,172 km2, considering the 2014th deforestation mask provided by the Deforestation Monitoring Program (PRODES) data [16, 24] (Fig. 1)

  • aboveground biomass (AGB) datasets Forest inventories We found at least ten stakeholders working on forest inventory plots of the Brazilian Amazon (Table 1)

Read more

Summary

Introduction

Brazilian Amazon forests contain a large stock of carbon that could be released into the atmosphere as a result of land use and cover change. Considering the Brazil‐ ian Amazon extension, the use of remote sensing, combined with forest inventory plots, is one of the best options to estimate forest aboveground biomass (AGB). The combination of limited forest inventory data and different remote sensing products has resulted in significant differences in the spatial distribution of AGB estimates. This study evaluates the spatial coverage of AGB data (forest inventory plots, AGB maps and remote sensing products) in undisturbed forests in the Brazilian Amazon. To quantify the carbon stocks at the national scale, Amazon countries have been using forest inventory plots to measure aboveground biomass (AGB) [6, 7]. AGB data estimates are necessary for National Communications on greenhouse gases (GHG) and reduce emissions from deforestation and degradation (REDD+), both under the United Nations Framework Convention on Climate Change (UNFCCC) [13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.